بسم الله الرحمن الرحيم
The Ideal Cholesterol: is the lower is better?

By Essam Mahfouz, MD
Professor of Cardiology, Mansoura University
Cholesterol & atherogenesis

- Theoretical evidence
- Experimental evidence
- Epidemiological evidence
 - Large epidemiological trials
 - Regression trials
Lower Cholesterol Levels Associated With Lower CHD Risk

The Framingham Heart Study

CHD Incidence per 1000

≤ 204
205-234
235-264
265-294
≥ 295

Serum Cholesterol (mg/100 mL)

Relation of Serum Cholesterol to CHD Mortality

The MRFIT Study

Mortality Relative Risk

Serum Cholesterol (mg/dL)

Early High TC Levels Associated With Later CHD Events

Results After 40 Years

*1017 men, average age 22

LDL Cholesterol

- Remains the cornerstone of dyslipidemia therapy\(^1\)
- Strongly associated with atherosclerosis and CHD events\(^1\)
- 10% increase results in a 20% increase in CHD risk\(^1\)
- Most patients with elevated LDL untreated
 - Only 4.5 million out of 28.4 million treated\(^2,3\)

Increased Relative Risk of CHD Associated With Increasing LDL Levels

ARIC Study
Men

Adjusted for age and race
12-year follow-up
n = 5432

Relative Risk of CHD

2.35 2.85 3.35 3.85 4.35 4.85 (mmol/L)
91 110 130 149 168 188 (mg/dL)

Increased Relative Risk of CHD
Associated With Increasing LDL Levels

ARIC Study
Women

Adjusted for age and race
12-year follow-up
n = 6907

Increased Relative Risk of CHD
Associated With Increasing LDL Levels

Event Reduction in Angiographic Plaque Regression Trials

* As defined by the comparison between the change in the treated group vs the change in the control.

Clinical Events Correlate Directly With On-Treatment LDL-Cholesterol Levels

\[y = 0.0599x - 3.3952 \]

\[R^2 = 0.9305 \]

\[P = 0.0019 \]

\(P = \) placebo; \(S = \) statin.

O'Keefe et al. *J Am Coll Cardiol.* 2004;43:2142
Atherosclerosis Progression Varies Directly With On-Treatment LDL Cholesterol Levels

AT = atorvastatin; CCAIT = Canadian Coronary Atherosclerosis Intervention Trial; LCAS = Lipoprotein and Coronary Atherosclerosis Study; MAAS = Multicentre Anti-Atheroma Study; MARS = Monitored Atherosclerosis Regression Study; MLD = mean lumen diameter; PLAC = Pravastatin Limitation of Atherosclerosis in the Coronary Arteries study; PR = pravastatin; REGRESS = Regression Growth Evaluation Statin Study; REVERSAL = Reversal of Atherosclerosis with Aggressive Lipid Lowering.

O'Keefe et al. J Am Coll Cardiol. 2004;43:2142
Gotto. Am J Cardiol. 2005;96(suppl):34F.
Proposed Mechanisms of Event Reduction by Lipid-Lowering Therapy

• Improved endothelium-dependent vasodilation
• Stabilization of atherosclerotic lesions
 – especially nonobstructive, vulnerable plaques
• Reduction in inflammatory stimuli
 – lipoproteins and modified lipoproteins
• Prevention, slowed progression, or regression of atherosclerotic lesions

Intermolecular Similarities And Differences Of Statins

- Intermolecular similarities
 - all statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
 - all statins share a common dihydroxy group necessary for HMG-CoA reductase enzyme inhibition

- Intermolecular difference
 - substituents on pharmacophore moiety are responsible for pharmacokinetic and pharmacodynamic differences, which in turn affect efficacy, safety, and pleiotropic effects

Mason et al. *Am J Cardiol.* 2005;96(suppl):11F.
Chemical Structures Of Statins

Natural Or Fungal-Derived

- Lovastatin
- Simvastatin
- Pravastatin

Synthetic

- Atorvastatin
- Fluvastatin
- Cerivastatin
Vessel Wall And Endothelial Cell Membrane Changes With Atherogenesis

Mason et al. *Am J Cardiol.* 2005;96(suppl):11F.
Metabolic Pathways Blocked By Statins

Acetyl-CoA + Acetoacetyl-CoA

\[\rightarrow \] HMG-CoA

Statins

Statins Block

Mevalonate

\[\rightarrow \] Isopentanylprenyl pyrophosphate (PP)

\[\rightarrow \] Geranyl pyrophosphate (PP)

\[\rightarrow \] Farnesyl pyrophosphate (PP)

Squalene

\[\rightarrow \] Cholesterol

PP = pyrophosphate.

Slower Late Benefic

Related to Hepatic LDL Reduction

Early/Rapid and Later Benefit (pleiotropic effect)

Important in Vascular Cellular Responses

\[\rightarrow \] Geranyl geranyl pyrophosphate (PP)

Rho

\[\rightarrow \] Translocates to the Cell Membrane

PP = pyrophosphate.

Ray and Cannon. *Am J Cardiol.* 2005;96(suppl):54F.
PLEIOTROPIC EFFECTS OF STATINS

• **Antiatherosclerotic effects on:**
 - Endothelial dysfunction
 - Inflammation (inhibition of adhesion molecules)
 - Plaque stability (inhibition of MMP)
 - LDL oxidation and density
 - SMC proliferation
 - Cholesterol esterification and accumulation

• **Antithrombotic effects on:**
 - Tissue Factor
 - Platelet aggregation
 - Blood viscosity and fibrinogen
 - Fibrinolysis

Potential Time Course of Statin Effects

- **LDL-C lowered***
- Inflammation reduced
- Vulnerable plaques stabilized
- Endothelial function restored
- Ischemic episodes reduced
- Cardiac events reduced***

* Time course established
Key Statin Trials and Spectrum of Risk

Increasing absolute CHD risk

- 4S
- LIPID
- CARE
- ASCOT-LLA
- WOSCOPS
- AFCAPS/TexCAPS
- HPS

CHD/high cholesterol
CHD/average to high cholesterol
CHD/average cholesterol
Some patients with CHD*/
average cholesterol
No MI/high cholesterol
No CHD/average cholesterol

With CHD or without CHD
With High LDL-C or with Low LDL-C

*CHD risk equivalent, e.g. diabetes.
4S Study: Provided Hard Evidence for the Use of Simvastatin 20-40mg in CHD Patients

-30 (p=0.0003)
-42 (p<0.00001)
-34 (p<0.00001)
-37 (p<0.00001)

*Primary endpoint

The survival benefits that pts allocated to simvastatin accrued during the double-blind period of 4S persisted during long-term follow-up (10.4 years)

- **All-cause Mortality**
 - Relative risk: 0.85 (95% CI: 0.74–0.97)
 - p=0.016

- **Cardiovascular Mortality**
 - Relative risk: 0.83 (95% CI: 0.71–0.98)
 - p=0.023

- **Coronary Mortality**
 - Relative risk: 0.76 (95% CI: 0.64–0.90)
 - p=0.002

- **Cancer Mortality**
 - Relative risk: 0.86 (95% CI: 0.60–1.08)
 - p=0.142

T.E. Strandeberg et al. LANCET 2004; 364: 771–777
Heart Protection Study

Major Vascular Events Over Time

<table>
<thead>
<tr>
<th>Year of follow-up</th>
<th>Placebo</th>
<th>Simvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Risk reduction = 24% (p < 0.0001)

Benefit (mean ± SE) per 1000 patients allocated to simvastatin:
- 0 years: 5 ± 3
- 1 year: 20 ± 4
- 2 years: 35 ± 5
- 3 years: 46 ± 5
- 4 years: 54 ± 7
- 5 years: 60 ± 18

SE = standard error of the mean

Adapted from Heart Protection Study Collaborative Group Lancet 2002;360:7-22.
Simvastatin 40mg
Vascular Events by Prior Lipid Levels

<table>
<thead>
<tr>
<th>Baseline features</th>
<th>SIMVA (10269)</th>
<th>PLACEBO (10267)</th>
<th>Risk ratio at SIMVA better</th>
<th>95% CI SIMVA worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3.0 (116 mg/dl)</td>
<td>602</td>
<td>761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 3.0 < 3.5</td>
<td>483</td>
<td>655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 3.5 (135 mg/dl)</td>
<td>957</td>
<td>1190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.0 (193 mg/dl)</td>
<td>361</td>
<td>476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>5.0 < 6.0</td>
<td>746</td>
<td>965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>6.0 (232 mg/dl)</td>
<td>935</td>
<td>1165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL PATIENTS</td>
<td>2042 (19.9%)</td>
<td>2606 (25.4%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Het $\chi^2 = 3.0$

Het $\chi^2 = 0.5$

24%SE 2.6 reduction (2P<0.00001)
Heart Protection Study
Impact of Simvastatin on Mortality

Cause of death
- **Vascular events**
 - Coronary
 - Other vascular
- **Nonvascular events**
- **ALL CAUSES**

Risk ratio and 95% CI

- **Simvastatin better**
- **Placebo better**

17% risk reduction
p<0.0001

13% risk reduction
p=0.0003

*Areas of the symbols are proportional to the amount of statistical information in each subdivision

Adapted from Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22.
Impact of Simvastatin in Heart Protection Study
Major Vascular Events

Vascular event*

Major coronary event
Nonfatal MI
Coronary death

Stroke

Revascularization**

ANY MAJOR VASCULAR EVENT

Simvastatin better

Placebo better

0.4 0.6 0.8 1.0 1.2 1.4
Risk ratio and 95% CI

27% risk reduction
p<0.0001

25% risk reduction
p<0.0001

24% risk reduction
p<0.0001

24% risk reduction
p<0.0001

*Patients could be in more than one vascular event category.
**Includes coronary and noncoronary revascularizations.

Adapted from Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22.
Heart Protection Study

Impact of Simvastatin on Stroke

Stroke etiology

- **All stroke**
 - Ischemic
 - Hemorrhagic
 - Unknown

ANY MAJOR VASCULAR EVENT*

- **Simvastatin better**
- **Placebo better**

<table>
<thead>
<tr>
<th>Risk ratio and 95% CI</th>
<th>Simvastatin better</th>
<th>Placebo better</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25% risk reduction</td>
<td>p<0.0001</td>
</tr>
<tr>
<td></td>
<td>24% risk reduction</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

*Major vascular events included nonfatal MI, coronary death, revascularization, and stroke.

Adapted from Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22.
Impact of Simvastatin on Major Vascular Events
Patients with Diabetes

Baseline feature

<table>
<thead>
<tr>
<th>Patients with Diabetes</th>
<th>Simvastatin 40 mg better</th>
<th>Placebo better</th>
</tr>
</thead>
<tbody>
<tr>
<td>With CHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without CHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL PATIENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With CHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without CHD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23% risk reduction
p<0.0001

24% risk reduction
p<0.0001

24% risk reduction
p<0.0001

25% risk reduction
p<0.0001

Consistency Across Subgroups

Adapted from Heart Protection Study Collaborative Group Lancet 2002;360:7-22; HPS Group communication.
Impact of Simvastatin on Major Vascular Events By Age and Gender

Consistency Across Subgroups

Baseline feature

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th><65</th>
<th>≥65 <70</th>
<th>≥70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>ALL PATIENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk ratio and 95% CI

0.4 0.6 0.8 1.0 1.2 1.4

24% risk reduction
p<0.0001

Adapted from Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22.
Post-CABG: Impact of Aggressive vs Moderate Lowering of LDL-C on Atherosclerosis

Study group characteristics

- Sample size: 1,351 (M/F)
- 1 to 11 yr post-CABG
- LDL-C 130-174 mg/dL after diet

Treatment

- Randomized, blinded to
 - lovastatin 40-80 mg + cholestyramine 8 g/day (if needed)
 - lovastatin 2.5-5 mg + cholestyramine 8 g/day (if needed)
 - aggressive LDL-C target: ≤85 mg/dL
 - moderate LDL-C target: 130-140 mg/dL

Monitoring

- Quantitative coronary angiography

Post-CABG: End Points, Results, Conclusions

- **Primary end point:** Mean per-patient percentage of grafts with significant progression in SVG (≥ 0.6 mm change)
- **Secondary end point:** New occlusions, new lesions, lumen narrowing
- **Results:**
 - aggressive treatment group: significantly less ($P<0.001$) progression, fewer new occlusions and lesions, and ↓ mean lumen diameter
 - revascularization rate ↓ 29% ($P=0.03$)
- **Conclusions:** Mean LDL-C levels of 95 mg/dL associated with greater benefit than mean LDL-C of 135 mg/dL

<table>
<thead>
<tr>
<th></th>
<th>MRE Moderate</th>
<th>MRE Aggressive</th>
<th>Difference %</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression</td>
<td>39</td>
<td>28</td>
<td>28</td>
<td><0.001</td>
</tr>
<tr>
<td>New occlusions</td>
<td>16</td>
<td>10</td>
<td>40</td>
<td><0.001</td>
</tr>
<tr>
<td>New lesions</td>
<td>21</td>
<td>10</td>
<td>52</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Mean lumen change in mm

<table>
<thead>
<tr>
<th></th>
<th>Minimum diameter</th>
<th>Mean diameter</th>
<th>Difference</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum diameter</td>
<td>-0.38</td>
<td>-0.20</td>
<td>48</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean diameter</td>
<td>-0.34</td>
<td>-0.16</td>
<td>52</td>
<td><0.001</td>
</tr>
</tbody>
</table>

MRE=Mean per-patient percentage of grafts.

Post-CABG:
Event Rates by Cholesterol Group

Event=PTCA or bypass surgery

$P=0.03$.

Rationale For Statins In ACS

- Revascularization procedures do not modify underlying pathophysiology and only modestly reduce the risk of subsequent events

- Statins contribute to plaque stability and/or regression through a number of lipid-dependent and -independent (pleiotropic) mechanisms (e.g., ↓ inflammation)

- Small differences in therapeutic efficacy can result in significant differences in events

Schwartz and Olsson. Am J Cardiol. 2005;96(suppl):45F.
Role Of Statins In ACS: Non-Lipid Effects

ADP = adenosine diphosphate; CD40-L = CD40 ligand; IFN = interferon; IL = interleukin; vWF = von Willebrand factor.

Pathobiology of Lipid and non-Lipid mechanisms in ACS

Non lipid-related

- Endothelial Dysfunction/Activation
- Inflammation/Immune activation

Inhibitory

Coagulation/Platelet activation

Inhibitory

Lipid-related

- Liver
 - Hepatic cholesterol synthesis

Inhibitory

- Statins

Clinic benefit of statins
- reduced atherosclerosis progression
- reduced clinical events

Content Provided by the American College of Cardiology
Randomized Trials Of Statins In ACS

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>Duration</th>
<th>Number Of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRACL (2001)</td>
<td>Placebo versus atorvastatin 80 mg</td>
<td>4 months</td>
<td>3086</td>
</tr>
<tr>
<td>FLORIDA (2002)</td>
<td>Placebo versus fluvastatin 80 mg</td>
<td>1 year</td>
<td>540</td>
</tr>
<tr>
<td>PROVE-IT (2004)</td>
<td>Pravastatin 40 mg versus atorvastatin 80 mg</td>
<td>2 years</td>
<td>4162</td>
</tr>
<tr>
<td>A to Z (2004)</td>
<td>Placebo for 4 months followed by simvastatin 20 mg versus simvastatin 40 mg for 1 month followed by simvastatin 80 mg</td>
<td>2 years</td>
<td>4496</td>
</tr>
<tr>
<td>PACT (2004)</td>
<td>Placebo versus pravastatin 20-40 mg</td>
<td>1 month</td>
<td>3408</td>
</tr>
<tr>
<td>PRINCESS (presented 2004)</td>
<td>Placebo versus cerivastatin 0.4 mg</td>
<td>3 months*</td>
<td>3605</td>
</tr>
</tbody>
</table>

*Study was designed with a subsequent 18-month period in which both groups were to be treated with cerivastatin 0.4-0.8 mg/dL. However, this was not accomplished due to early termination of study. Schwartz and Olsson. *Am J Cardiol.* 2005;96(suppl):45F
PROVE IT - TIMI 22: Study Design

4,162 patients with an Acute Coronary Syndrome < 10 days

Double-blind

ASA + Standard Medical Therapy

Standard Therapy (Pravastatin 40 mg) Intensive Therapy (Atorvastatin 80 mg)

Duration: Mean 2 year follow-up (1001 events)

Primary Endpoint: Death, MI, Documented UA requiring hospitalization, revascularization (> 30 days after randomization), or Stroke

Content Provided by the American College of Cardiology
PROVE IT-TIMI 22: A Major Cardiovascular Event Or Death From Any Cause Primary End Point

Death Or Major Cardiovascular Event (%)

- Pravastatin 40 mg
- Atorvastatin 80 mg

$P = .03$

$P = .005$ Overall

PROVE IT-TIMI 22: A Major Cardiovascular Event Or Death From Any Cause At Different Censoring Times

<table>
<thead>
<tr>
<th>Censoring Time</th>
<th>Hazard Ratio (95% CI)</th>
<th>Risk Reduction (%)</th>
<th>Event Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 days</td>
<td>1.25</td>
<td>17</td>
<td>1.9</td>
</tr>
<tr>
<td>90 days</td>
<td>1.50</td>
<td>18</td>
<td>6.3</td>
</tr>
<tr>
<td>180 days</td>
<td>0.50</td>
<td>14</td>
<td>12.2</td>
</tr>
<tr>
<td>End of follow-up</td>
<td>0.75</td>
<td>16</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Atorvastatin Better
Pravastatin Better

PROVE IT-TIMI 22: CRP Levels At Enrollment And During Follow-Up

<table>
<thead>
<tr>
<th>CRP (mg/L)</th>
<th>Baseline</th>
<th>30 Days</th>
<th>4 Months</th>
<th>End of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>12.2</td>
<td>1.6</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>30 Days</td>
<td>12.2</td>
<td>1.6</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>4 Months</td>
<td>11.9</td>
<td>2.3</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>End of Study</td>
<td>11.9</td>
<td>2.3</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* * P<.001 vs baseline.

** P<.001 vs pravastatin.

Achieved CRP With Intensive Versus Standard Statin Therapy

<table>
<thead>
<tr>
<th></th>
<th>Prava 40 (mg/L)</th>
<th>Atorva 80 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3</td>
<td>1.6*</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1.4*</td>
</tr>
</tbody>
</table>

p<0.001

Death, MI or ACS Rehospitalization (Late Phase)

% of patients with death, MI or, rehospitalization for ACS

Pravastatin 40 mg

Atorvastatin 80 mg

28% RR ↓
P=0.003

Months following randomization

Ray et al. JACC 2005

Content Provided by the American College of Cardiology
Conditional Hazard Ratio of Intensive vs Standard Therapy

Primary endpoint

Year 1

HR 0.5 0.75 1.0 1.25
Intensive Therapy Better

Standard Therapy Better

p=0.07

Year 2

p=0.02

Composite endpoint

Year 1

HR 0.5 0.75 1.0 1.25
Intensive Therapy Better

Standard Therapy Better

p=0.01

Year 2

p=0.01

Ray et al. JACC 2005
Conclusions

- Benefits of intensive therapy occur within weeks, a time window consistent with the early pleiotropic effects

- Continuing high-dose statin therapy in more stable patients beyond the acute phase is associated with similar long-term benefit

 → Two “windows of cardioprotection”

- ACS patients should be started in-hospital on intensive statin therapy and should be continued long-term
AHA/CDC Panel: Recommendations for hs-CRP Laboratory Testing

- Measurements of hs-CRP:
 - Should be performed twice (2 weeks apart)
 - Results averaged, expressed as mg/L
 - Fasting or nonfasting, in metabolically stable patients
 - If level >10 mg/L, test should be repeated, patient examined for sources of infection or inflammation

- Relative risk categories for hs-CRP levels:
 - Low <1 mg/L
 - Average 1.0–3.0 mg/L
 - High >3.0 mg/L

Implications of recent statin trials on ATP III guidelines

Risk categories definitions:

- **Very high risk:**
 1. Multiple risk factors especially DM
 2. Uncontrolled risk factors
 3. Metabolic syndrome
 4. ACS

- **High risk**
 1. CAD
 2. CAD equivalent e.g. PAD, Carotid atheroma, AAA, DM, 2 Risk factors (10y risk > 20%)
Implications of recent statin trials on ATP III guidelines

- **Moderate high risk:**
 2 risk factors (10y risk 10-20%)

- **Moderate risk**
 2 risk factors (10y risk < 10%)

- **Low risk**
 0-1 risk factors

- **Change in LDL-C Galls:**
 - Very high risk LDL-C < 70mg/dl
 - High risk LDL-C < 100mg/dl
Implications of recent statin trials on ATP III guidelines

- Moderate high risk LDL-C < 130 mg/dl
- Moderate and low risk recommendations unchanged

Statin doses that can achieve 30-40% reduction in LDL-C are:

<table>
<thead>
<tr>
<th>Statin</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>10mg</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>20-40 mg</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>40mg</td>
</tr>
<tr>
<td>Pravasatin</td>
<td>40 mg</td>
</tr>
<tr>
<td>Fluvastatin</td>
<td>40-80 mg</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>5-10 mg</td>
</tr>
</tbody>
</table>
ATP III New Galls

TABLE 2. ATP III LDL-C Goals and Cutpoints for TLC and Drug Therapy in Different Risk Categories and Proposed Modifications Based on Recent Clinical Trial Evidence

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>LDL-C Goal</th>
<th>Initiate TLC</th>
<th>Consider Drug Therapy**</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk: CHD or CHD risk equivalents†</td>
<td><100 mg/dL</td>
<td>≥100 mg/dL#</td>
<td>≥100 mg/dL†† (optional goal: <70 mg/dL)††</td>
</tr>
<tr>
<td>(10-year risk >20%)</td>
<td>(optional goal: <70 mg/dL)††</td>
<td></td>
<td>(100 mg/dL; consider drug options)**</td>
</tr>
<tr>
<td>*Moderately high risk: 2+ risk factors‡</td>
<td><130 mg/dL¶</td>
<td>≥130 mg/dL#</td>
<td>≥130 mg/dL (100–129 mg/dL; consider drug options)‡‡</td>
</tr>
<tr>
<td>(10-year risk 10% to 20%)§§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Moderate risk: 2+ risk factors‡ (10-year</td>
<td><130 mg/dL</td>
<td>≥130 mg/dL</td>
<td>≥160 mg/dL</td>
</tr>
<tr>
<td>risk <10%)§§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Lower risk: 0–1 risk factor§</td>
<td><160 mg/dL</td>
<td>≥160 mg/dL</td>
<td>≥190 mg/dL (160–189 mg/dL: LDL-lowering drug optional)</td>
</tr>
</tbody>
</table>
ALL of the ACS pts treated with Simvastatin 40mg achieved the new LDL treatment goal (70mg/dl) based upon the revised U.S. Guidelines (NCEP-ATPIII)

de Lemos et al. JAMA 2004;292:1307-1316
Primary Efficacy Outcome Measure: First Major Cardiovascular Event*

HR = 0.78 (95% CI 0.69, 0.89)
P=0.0002

*CHD death, nonfatal non-proc-related
MI, resuscitated cardiac arrest, stroke

Mean Lipid Levels During Trial

<table>
<thead>
<tr>
<th></th>
<th>TC</th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg</td>
<td>178</td>
<td>101</td>
<td>47</td>
<td>156</td>
</tr>
<tr>
<td>80 mg</td>
<td>150</td>
<td>77</td>
<td>47</td>
<td>132</td>
</tr>
</tbody>
</table>

IDEAL
Incremental Decrease in Endpoints through Aggressive Lipid Lowering
IDEAL Study Design...

- Multi-center (190 centers in Northern Europe) prospective, randomized, open-label blinded endpoint classification (PROBE Design)
- Patients with CHD who had experienced a MI
- Received atorvastatin 80 mg/per day or simvastatin 20 mg/per day (approximately 20% of which were increased to 40 mg/day at week 24 in patients whose total cholesterol remained greater than 190 mg/dL or whose LDL-C remained greater than 115 mg/dL).
- Median Duration: 5.5 years
- The Study was designed to have 90% power to detect an anticipate 21% relative risk reduction in primary endpoint
IDEAL Study Objective & Endpoints...

Objective:
- To determine whether an incremental decrease in the risk of CHD can be achieved by a greater decrease in LDL-C in patients with CHD who had experienced an MI

Primary Endpoint:
1. **Major Coronary event**: Coronary death, hospitalization for Non fatal acute MI, or Cardiac arrest with resuscitation

Secondary Endpoints:
1. **Major CV event**: Any primary event plus Stroke
2. **Any Coronary Heart Disease event**: Any primary event, any coronary revascularization procedure, or hospitalization for Unstable Angina.
3. **Any Cardiovascular events**: Any of the former plus hospitalization with 1ry diagnosis of CHF and PAD.
4. **Individual components of the composite endpoints**
5. **All cause Mortality**
8,888 patients with CHD who had experienced a myocardial infarction aged of 80 years or younger. The randomized patients had the following characteristics:

- Mean age: 61.7 and +/- 9.5 years
- 19.1% women (mean age 64 +/- 9.5 years)
- Mean baseline Total C: 196 mg/dL
- Mean baseline LDL-C: 122 mg/dL
- Mean baseline HDL-C: 46 mg/dL
Reductions in LDL-C by Treatment Group

Mean LDL-C at 1 Year = 102 mg/dL (2.6 mmol/L)
Mean LDL-C During Treatment = 104 mg/dL (2.7 mmol/L)

Mean LDL-C at 1 Year = 79 mg/dL (2.0 mmol/L)
Mean LDL-C During Treatment = 81 mg/dL (2.1 mmol/L)

Reductions in HDL-C by Treatment Group

Mean HDL-C at 1 Year = 47 mg/dL (1.22 mmol/L)

Mean HDL-C at 1 Year = 46 mg/dL (1.19 mmol/L)

IDEAL: Primary outcome

<table>
<thead>
<tr>
<th>Outcome (%)</th>
<th>Simvastatin (n=4449)</th>
<th>Atorvastatin (n=4439)</th>
<th>HR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major coronary event</td>
<td>10.4</td>
<td>9.3</td>
<td>0.89</td>
<td>0.07</td>
</tr>
<tr>
<td>CHD death</td>
<td>4.0</td>
<td>3.9</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>7.2</td>
<td>6.0</td>
<td>0.83</td>
<td>0.02</td>
</tr>
<tr>
<td>Cardiac arrest with resuscitation</td>
<td>0.2</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Cumulative Hazard of Cardiovascular Disease

Copyright restrictions may apply.
IDEAL: Secondary outcomes

<table>
<thead>
<tr>
<th>Outcome (%)</th>
<th>Simvastatin (n=4449)</th>
<th>Atorvastatin (n=4439)</th>
<th>HR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any CHD event</td>
<td>23.8</td>
<td>20.2</td>
<td>0.84</td>
<td><0.001</td>
</tr>
<tr>
<td>Coronary revascularization</td>
<td>16.7</td>
<td>13.0</td>
<td>0.77</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospitalization for U/A</td>
<td>5.3</td>
<td>4.4</td>
<td>0.83</td>
<td>0.06</td>
</tr>
<tr>
<td>Fatal or nonfatal stroke</td>
<td>3.9</td>
<td>3.4</td>
<td>0.87</td>
<td>0.20</td>
</tr>
<tr>
<td>Major CV event</td>
<td>13.7</td>
<td>12.0</td>
<td>0.87</td>
<td>0.02</td>
</tr>
</tbody>
</table>
IDEAL Study: Secondary End Points

Nonfatal MI

- **Simvastatin**
- **Atorvastatin**

Cumulative Hazard (%)

<table>
<thead>
<tr>
<th>Years Since Randomization</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR=0.83, P=0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stroke

HR=0.87, P=0.20

Revascularization

HR=0.77, P<0.001

PAD*

HR=0.76, P=0.02

*Newly diagnosed or requiring hospitalization.

Adapted from Pedersen TR et al. JAMA. 2005;294:2437-2445.
Other Results

- No difference in total mortality
- More nonserious adverse events resulting in drug discontinuation in the atorvastatin group and a greater proportion of patients developing liver-enzyme elevation with atorvastatin 80 mg
- Benefit of atorvastatin in line with achieved LDL cholesterol reduction
Frequency of Adverse Events and Most Relevant Liver Enzyme Elevations

Table 4. Frequency of Adverse Events and Most Relevant Liver Enzyme Elevations

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Simvastatin, No. (%) (n = 4449)</th>
<th>Atorvastatin, No. (%) (n = 4439)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>4202 (94.4)</td>
<td>4204 (94.7)</td>
<td>.62</td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>2108 (47.4)</td>
<td>2064 (46.5)</td>
<td>.42</td>
</tr>
<tr>
<td>Any adverse event resulting in permanent discontinuation of study drug</td>
<td>186 (4.2)</td>
<td>426 (9.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Adverse events resulting in permanent discontinuation of study drug with incidence >0.5% in either treatment group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>51 (1.1)</td>
<td>97 (2.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9 (0.2)</td>
<td>38 (0.9)</td>
<td><.001</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>10 (0.2)</td>
<td>37 (0.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Nausea</td>
<td>6 (0.1)</td>
<td>22 (0.5)</td>
<td>.004</td>
</tr>
<tr>
<td>Investigator-reported myopathy</td>
<td>11 (0.25)</td>
<td>6 (0.14)</td>
<td>.33</td>
</tr>
<tr>
<td>Investigator-reported rhabdomyolysis (subset of coded myopathy)</td>
<td>3 (0.07)</td>
<td>2 (0.05)</td>
<td>>.99</td>
</tr>
<tr>
<td>AST >3 × ULN at 2 consecutive measurements</td>
<td>2 (0.04)</td>
<td>18 (0.41)</td>
<td><.001</td>
</tr>
<tr>
<td>ALT >3 × ULN at 2 consecutive measurements</td>
<td>5 (0.11)</td>
<td>43 (0.97)</td>
<td><.001</td>
</tr>
<tr>
<td>Myopathy defined as CPK >10 × ULN at 2 consecutive measurements with muscle symptoms</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatine phosphokinase; ULN, upper limit of normal.

*P values were calculated by 2-sided χ² test.

Statin Advisory: Definitions of Muscle Toxicity

- **Myopathy** — a general term referring to any disease of muscles; myopathies can be acquired or inherited and can occur at birth or later in life
- **Myalgia** — muscle ache or weakness without creatine kinase (CK) elevation
- **Myositis** — muscle symptoms with increased CK levels
- **Rhabdomyolysis** — muscle symptoms with marked CK elevation (>10x the upper limit of normal [ULN]) and creatinine elevation (usually with brown urine and urinary myoglobin)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Evaluation Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache, dyspepsia</td>
<td>Evaluate baseline symptoms, 6–8 wk after initiating therapy, then at each follow-up visit</td>
</tr>
<tr>
<td>Muscle soreness, tenderness, or pain</td>
<td>Evaluate baseline muscle symptoms and CK levels; muscle symptoms 6–12 wk after initiating therapy and at each follow-up visit; CK measurement when muscle soreness, tenderness, or pain present</td>
</tr>
<tr>
<td>ALT, AST</td>
<td>Evaluate baseline ALT/AST, 12 wk after initiating therapy, then annually or as indicated</td>
</tr>
</tbody>
</table>

ALT=alanine transferase; AST=aspartate transferase.

Statin Advisory: Clinical Precautions When Prescribing Statin Therapy

- Myopathy more likely to occur at higher doses
- Doses should not exceed those required to attain ATP III goals
- Attention should be paid to factors that may increase risk for myopathy
Statins Advisory: Risk Factors for Statin-Associated Myopathy

Concomitant medications:
- Fibrates
- Nicotinic acid (rarely)
- Cyclosporine
- Azole antifungals
 - Itraconazole, ketoconazole
- Macrolide antibiotics
 - Erythromycin, clarithromycin
- HIV protease inhibitors
- Nefazodone (antidepressant)
- Verapamil
- Amiodarone
- Large quantities of grapefruit juice (>1 qt/d)
- Alcohol abuse

Other considerations:
- Advanced age (especially >80 yr; women more than men)
- Small body frame, frailty
- Multisystem disease (eg, chronic renal insufficiency, especially due to diabetes)
- Multiple medications
- Perioperative periods

Statin Advisory: Conclusions

- Statins reduce the incidence of major coronary events, coronary procedures, and stroke in high-risk patients
- This potential is not fully realized due to underuse in clinical practice
- Statins are safe in the vast majority of patients
- Statins should be used with appropriate caution, particularly in selected patients

Clinical Outcome Trials Testing
Intensive Vs Standard Statin Therapy

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population</th>
<th>N</th>
<th>Duration Years</th>
<th>LDL-C reduction Mg/dl</th>
<th>Risk reduction %</th>
<th>Risk reduction in CAD death or MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE IT-TIMI22</td>
<td>ACS</td>
<td>4162</td>
<td>2</td>
<td>33</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>A-Z</td>
<td>ACS</td>
<td>4497</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>TNT</td>
<td>Stable CAD</td>
<td>10000</td>
<td>5</td>
<td>24</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>IBEAL</td>
<td>Stable CAD</td>
<td>8888</td>
<td>5</td>
<td>23</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins

Proportional effects on cause-specific mortality per mmol/L LDL cholesterol reduction

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Events (%)</th>
<th>RR (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>(45 054)</td>
<td>(45 002)</td>
</tr>
<tr>
<td>Vascular causes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td>1548 (3.4%)</td>
<td>1960 (4.4%)</td>
</tr>
<tr>
<td>Stroke</td>
<td>265 (0.6%)</td>
<td>291 (0.6%)</td>
</tr>
<tr>
<td>Other vascular</td>
<td>289 (0.6%)</td>
<td>302 (0.7%)</td>
</tr>
<tr>
<td>Any non-CHD vascular</td>
<td>554 (1.2%)</td>
<td>593 (1.3%)</td>
</tr>
<tr>
<td>Any vascular</td>
<td>2102 (4.7%)</td>
<td>2553 (5.7%)</td>
</tr>
<tr>
<td>Non-vascular causes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>1094 (2.4%)</td>
<td>1069 (2.4%)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>98 (0.2%)</td>
<td>125 (0.3%)</td>
</tr>
<tr>
<td>Trauma</td>
<td>51 (0.1%)</td>
<td>57 (0.1%)</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>487 (1.1%)</td>
<td>550 (1.2%)</td>
</tr>
<tr>
<td>Any non-vascular</td>
<td>1730 (3.8%)</td>
<td>1801 (4.0%)</td>
</tr>
<tr>
<td>Any death</td>
<td>3832 (8.5%)</td>
<td>4354 (9.7%)</td>
</tr>
</tbody>
</table>

Effect p < 0.0001
Proportional effects on major vascular events per mmol/L LDL cholesterol reduction

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Treatment (45 054)</th>
<th>Control (45 002)</th>
<th>RR (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-fatal MI</td>
<td>2001 (4.4%)</td>
<td>2769 (6.2%)</td>
<td>0.74 (0.70–0.79)</td>
</tr>
<tr>
<td>CHD death</td>
<td>1548 (3.4%)</td>
<td>1960 (4.4%)</td>
<td>0.81 (0.75–0.87)</td>
</tr>
<tr>
<td>Any major coronary event</td>
<td>33337 (7.4%)</td>
<td>4420 (9.8%)</td>
<td>0.77 (0.74–0.80)</td>
</tr>
<tr>
<td>CABG</td>
<td>713 (1.6%)</td>
<td>1006 (2.2%)</td>
<td>0.75 (0.69–0.82)</td>
</tr>
<tr>
<td>PTCA</td>
<td>510 (1.1%)</td>
<td>658 (1.5%)</td>
<td>0.79 (0.69–0.90)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1397 (3.1%)</td>
<td>1770 (3.9%)</td>
<td>0.76 (0.69–0.84)</td>
</tr>
<tr>
<td>Any coronary revascularisation</td>
<td>2620 (5.8%)</td>
<td>3434 (7.6%)</td>
<td>0.76 (0.73–0.80)</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>105 (0.2%)</td>
<td>99 (0.2%)</td>
<td>1.05 (0.78–1.41)</td>
</tr>
<tr>
<td>Presumed ischaemic stroke</td>
<td>1235 (2.8%)</td>
<td>1518 (3.4%)</td>
<td>0.81 (0.74–0.89)</td>
</tr>
<tr>
<td>Any stroke</td>
<td>1340 (3.0%)</td>
<td>1617 (3.7%)</td>
<td>0.83 (0.78–0.88)</td>
</tr>
<tr>
<td>Any major vascular event</td>
<td>6354 (14.1%)</td>
<td>7994 (17.8%)</td>
<td>0.79 (0.77–0.81)</td>
</tr>
</tbody>
</table>

Effect p < 0.0001
5-year absolute benefits on vascular outcomes per mmol/L LDL-C reduction in participants with and without previous MI or CHD.
Implications

The present meta-analysis indicate that the proportional reductions in the incidence of major coronary events, coronary revascularisations, and strokes were approximately related to the absolute reductions in LDL-C achieved with the statin regimens studied.
Implications

- The proportional reductions in such major vascular events per mmol/L LDL-C reduction were similar irrespective of the pretreatment cholesterol concentrations or other characteristics (e.g., age, sex, or pre-existing disease) of the study participants.

- Current treatment guidelines are based on lowering LDL-C to particular target levels, with somewhat lower targets for people at higher risk of coronary events.
Implications

The results of this meta-analysis suggest, however, that this strategy may not realise the full potential of such treatment.

- First, assessment of baseline risk should be based on any type of occlusive vascular event (rather than on coronary events alone), since lowering LDL cholesterol with a statin lowers the risks not just of coronary events but also of revascularisation procedures and of ischaemic strokes.

- Secondly, treatment goals for statin treatment should aim chiefly to achieve substantial absolute reductions in LDL-C (rather than to achieve particular target levels of LDL-C), since the risk reductions are proportional to the absolute LDL-C reductions.
Implications

Full compliance with available statin regimens can reduce LDL-C by at least 1.5 mmol/L in many circumstances, and hence might be expected to reduce the incidence of major vascular events by about one third. Ensuring that patients at high 5-year risk of any type of occlusive major vascular event achieve and maintain a substantial reduction in LDL-C would result in major clinical and public health benefits.
Take Home Messages

- Aggressive LDL-C lowering reduce CV events and NCEP 2004 Update to be fully adopted
- Physicians must follow the guidelines regarding indications and dose
- Patients already on statins must reduce their LDL-C to the new target
- The messages to the patients are:
 - For the bad cholesterol “the lower is better” for preventing MI, Stroke, need for revascularization and death
Take Home Messages

- Statins are safe overall even for patients with extremely low LDL-C levels, however side effects are more (up to 5%) but reversible
- Need to monitor their LDL-C & HDL-C
- Appropriate diet and exercise programs are essential

⚠️ Need for new therapeutic modalities “Beyond Statins”