Transfusion in gastroenterology and liver diseases

By

Prof.Dr. Fardous Ramadan

Blood and component therapy

- General Consideration
 - A)) Bl. Donation:
 - Bl. Can be donated every 8ws of 450 ml whole bl.
 - Avoid complications to donor, careful history, exam.
 - Tests before bl. donation:

```
HBsAg, anti-HCV, HIV-1,2, ALT, Serology for $, HTLV-1
```

B)) Options available:

- Loss of 1000ml or less → replace by crystalloid/ colloid.
- In ac. Emergency:- cross matching before completion of screening tests.
- Extreme emergency: use compatible units.
- Life threatening situations: use universal donor.

C)) Principles for transfusion:

- 1-Identification to avoid errors.
- 2- Equipment: large bore needle, use filters.
- 3- Addition of drugs or solutions.
- 4- Infusion rate: depends on clinical situation:
 - Generally RBC unit transfused over 2-3 hrs, not more than 4hrs to avoid bacterial contamination.
 - FFP, platelets →200 ml/hr.
 - Cryoprecipitate: within 6 hrs of thawing
 - Granulocytes: within 4 hrs.

- 5- Administration: start slowly 5 ml/m' for 15 m' with close observation of vital signs bec. severe reactions occur in the first 50cc' then increase infusion rate.
- 6- Bl. warmers: avoid transfusion of cold bl. warm bl. in approved warming machine not exceed 38 c°.
- 7- Bl. bags must not be put under hot tap water, microwave oven or immersed in unmonitored water bath.
- 8- Bl. that has been warmed and not used \rightarrow discard.

D)) Storage of bl:

- − Whole bl \rightarrow 21- 35 days.
- RBCs \rightarrow 21- 42 days (-1 -6 C°).
- Bl. stored more than 5 days → loose 50% of its
 platelets, more than one w→ loose 50% of 2,3 DPG.
- Platelets should be transfused within one w.
- FFP has normal levels of coagulation factors including factors V, VIII.
- Liquid stored plasma: lower levels of V, VIII.

E)) Compatibility tests

- Should be done for whole bl, RBCs.
- Not performed for FFP, cryoprecipitate or platelets but should be compatible with recipient RBCs.
 - Granulocyte concentrates contain RBCs, ABO compatibility between donor and recipient is also required.

Blood Transfusions

- Blood transfusion carries a slight but definite risk.
- No-transfusion should be administered unless the problem is evaluated as a whole.
- Most patients generally tolerate Hb 7-10gm/dl.
- Bl. transfusion is not recommended in chronic iron deficiency anemia, iron therapy will raise Hb, B₁₂ and folic acid improve megaloblastic anemia.

Whole Blood Transfusion

Indication

- Acute bl. loss of more than one third of bl.
- Symptomatic deficit in O₂ carrying capacity.
- Hypotension and hypovolemia not fully corrected by crystalloid or colloid infusion, it's most suitable for actively bleeding patients.

- Such patients have: tachycardia, shortness of breath, pallor, fatigue, syncope, postural hypotension, angina or cerebral hypoxia with decrease Hb and Hct.
- expected outcome: one unit blood increase Hb 1 gm/dl, and Hct 3%.

RBCs Transfusion

INDICATION:

- The need to increase O₂ carrying capacity without a need of volume expansion.
- Chronic anemia.
- CHF.

- Old age who can't tolerate rapid change in blood volume.
- Bone marrow failure: post chemotherapy.
- Expected outcome: as whole blood transfusion.

LEUCOCYTE DEPLETED RBCS

- It's used to prevent a recurrence of a nonhemolytic febrile transfusion reaction in patient who have had at least two reactions.
- Expected outcome: as RBCs transfusion.

Washed RBCs

 RBCs washed in saline rather than plasma, used for prevention of recurrent sever anaphylactic reaction in anemic patients.

FROZEN DEGLYCEROLIZED RBCs.

- RBCs frozen for up to 10 years at (-65°C).
- It's used for rare blood groups, and patients who have alloantibodies against high frequency RBCs antigen.
- It's very expensive and available only in certain centers.

IRRADIATED RBCs

Irradiation with gamma rays.

Is used to:

- Prevent GVHD after liver transplantation.
- Symptomatic anemia in lymphoma of GIT.
- After operations of GIT malignancies .

Component Therapy

PLATELETS TRANSFUSION

INDICATION

- To control active bleeding or prevent hemorrhage associated with deficiency in platelet number or function.
- Dilutional thrombocytopenia in massive transfusion,
 15-20 units of blood may significantly dilute platelets
 below haemostatic level.
- Qualitative platelet defect.

NB:

- Thrombocytopenia due to dysproteinemia and uremia is best treated by plasmapharesis and dialysis.
- In ITP,TTP and hypersplenism: platelet transfusion is not effective as the pathology will affect the transfused ones.
- Platelet transfusion should be repeated- every 3 days
 "half life 3-5 days"
- Platelet transfusion should be given for a defined need and in appropriate minimum amounts.

Dose:

- Platelet 60.000 80.000/ cmm, patients usually not bleed especially if bleeding time is less than 2 times of normal.
- Therapy: 50.000 80.000/ cmm.
- Prophylaxis: 10.000:- 20.000/ cmm.
- Preoperative: 50.000/ cmm.
- One unit/10 kgm- BW.

Outcome:

Platelet increase 5.000 - 10.000 per unit.

GRANULOCYTE TRANSFUSION

 Indicated in severely neutropenic patients with granulocyte count < 500/ml, and documented sepsis that have proven resistant to at least 2 days of appropriate aggressive antibiotic therapy.

FRESH FROZEN PLASMA

- INDICATIONS:
- 1- Specific coagulation factor-replacement: -
 - Isolated factor V and XI deficiency.
 - AT III: deficiency: -
 - Acquired:-
 - Liver dis.
 - Oral contraceptive.
 - DIC.

2- Multiple clotting factor deficiency:

- a- Severe liver disease esp:-
 - If patient Is bleeding.
 - During maneuvers e,g. liver biopsy.
- b- Coumarin drug reversal.
- c- Massive transfusion.
- d- Acute DIC.

3- Treatment of TTP.

Dose: 12-15 ml/kgm BW.

Expected outcome: correction of PT or PTT to less than 1.5 x upper limit of normal.

Cryoprecipitate

- 20 ml bag contains :
- VIII 100u, VWF 40-70% Factor XIII and 150-250 mg. of fibrinogen

Indication:

- Factor XIII deficiency.
- Fibrinogen, deficiency
 - Congenital.
 - Liver disease.
 - DIC.

- Cryoprecipitate is the only available source of fibrinogen in a concentrated form.
- At present the major indication for the use of cryoprecipitate is fibrinogen replacement when It's associated with bleeding.

PLASMA DERIVATIVES

1- Albumin and plasma protein fraction

Composition:

- Albumin is available in 5% and 20-25% solutions.
- In both 96% of total protein is albumin.

5% solution:

- a- 400 ml. bottle.
- b- 5% albumin.
- c- 150 mg/l sodium "Hypertonic" more crystalloid. Transfusion rate 10 ml/min

20-25 % solution :

- a- 100 ml bottle.
- b- 250 g/l albumin "Hyperoncotic".
- c- Poor-salt and chloride, more colloid.
- d- Transfusion rate 0.2-0.4 ml/min.

INDICATION:

5 % solution:

- Patient should be both hypovolemic and hypoproteinemic:
- Hypovolemia following burn.
- As a replacement fluid in plasma exchange.
- Initially in hemorrhagic shock, whilst awaiting for blood.

20-25% solution:

- hypoalbuminemia associated with severe peripheral edema in patients who can not tolerate fluid
 - end stage liver disease.
 - Following large volume paracentesis.
- Nephrotic syndrome.

N.B.:

 20-25% solution is a hyperoncotic solution, it has to be given slowly particularly in patients who are at risk of circulatory overload and not to be given undiluted to patients with dehydration.

2- Immunoglobulin:-

- a) Human normal immunoglobulin (HNI)
 - HAV prophylaxis:
 - to travelers
 - post exposure.
 - HCV:
- protection against ictric non A non B.
- following needle stick exposure.
- b) Specific immunoglobulin HBV.
 - Maternofetal transmission
 - Regular sexual contacts of carriers and cases of HBV
 - prophylaxis for known or suspected acute exposure to hepatitis B

cont

Prophylaxis recommended				
HBsIg given immediately and first dose of HBV vaccine (at different site)				
Dose of HBsIg given: immediately whilst awaiting results. Commence vaccination: No further action:				
Dose of HBsIg.				

Management of bleeding oesophageal varices in patients with chronic liver diseases.

A) Volume expansion:

- Insert one or two large bore cannulas, a central line may be indicated
- Ensure fresh blood is available and order 4-6 units.
- Signs of volume depletion are managed by Volume expanders till blood is available.
- Crystalloids should be used carefully as sodium retention is usual and lead to ascites.

B) Blood Transfusion

- Acute GIT bleeding with shock is an indication for the use of whole blood.
- Rate of transfusion 400 ml/ 15-30m' in moderate severe hypotension, till patient is stable.
- Packed RBCs is used for stable patients and in sub acute blood loss.
- If there is continued bleeding with a platelet count below 50X10⁹/L,
 Platelet transfusion may be considered to control, variceal bleeding.
 N. B: platelet count may show little increment in patients with splenomegaly.

- Fresh frozen plasma is indicated only if there is documented coagulopathy (prothrombin ratio >20)
- Provided blood volume is replaced and cardio respiratory function is adequate, Hb of 9 g / dl appear to be adequate. Giving red cells to try to raise Hb towards normal values may raise portal venous pressure.
- Coagulation factor concentrates may have a risk of thrombogenicity and should be used only with expert guidance.

- End points are:
 - systolic BP > 100mmHg.
 - CVP 8-15 cm H₂O
 - PTR <20.
 - Hb>9g/dl.– Ht 30-35%
 - Urine output >0 .5 ml / Kg/ hr.

Fluids and blood products used in managing patients with acute non variceal gastrointestinal bleeding

Severity	Clinical features	I.V infusion	End point
Severe	History of collapse ORShock:systolic Bp<100 mmHgpluse >100/min	 Replace fluid: Crystalloid (if blood lost up to 1 liter OR. colloid (if blood lost is > 1 liter) 	Maintain urine output >0.5 ml/kg/hr and systolic Bp>100 mmHg.
		 Ensure red cells are available. 	Maintain Hb above 9 g/dl
		Use available emergency transfusion protocol	
		Transfuse red cells according to clinical assessment and Hb/Hct	
Significant	Resting pulse >100/min and/or Hb<10g/dl	Replace fluid order compatible red cells (4 units)	• Maintain Hb > 9 g/dl
Trivial	pulse and Hb normal	Maintain IV access until diagnosis is clearSend patient sample for	
		red cell group and antibody screen	

Scientific Office Specialized Medical Hospital

Adverse reactions to blood transfusion

1- Acute reactions:

A- Febrile nonhemolytic reactions:

- This is characterized by post transfusion rise of 1°C in absence of hemolysis.
- It is due to antibodies stimulated by previous transfusion against antigens on donor lymphocytes, granulocytes and platelet.
- Clinically:
 - Flushing, palpitation, tachycardia, cough, chest discomfort.
 - ↑DBP, headache, fever, rigors
- First time reaction: slow: drip rate, warm drink, asprin, sedative if needed.
- Recurrent reaction: use granulocyte depleted RBCs.

Scientific Office Specialized Medical Hospital

B- Acute hemolytic transfusion reaction:

- Complement mediated lysis of donor RBCs in intravascular hemolysis and extra-vascular hemolysis in liver and spleen.
- This is due to anti A, anti B, anti Lewis in recipient plasma.

– CI/P:

- Fever, nausea, vomiting, chest pain.
- Restless, discomfort at infusion site.
- ↓ Bl.P, D.I.C.
- Loin pain and renal impairment.

– Treatment:

- Stop transfusion immediately.
- I.V. saline
- Recheck the unit of bl.
- I.V.: mannitol, diuretics to increase urine output >100ml/kg.
- Hemodialysis.

C- Transfusion related acute lung injury:

- Acute resp. distress in absence of primary heart failure.
- This is due to passive infusion of donor antibody directed against recipient leucocytes, followed by release of toxic material and ↑capillary permeability

— CI P:

- Fever, chest pain, dyspepsia.
- Cyanosis, cough hemoptysis.
- Hypoxemia 1-4 hrs post transfusion.
- X-ray: pulm. Infiltrate, non cardiogenic pulm oedema.

– Rx:

- Stop transfusion.
- Mechanical resp. support.
- Prophylaxis.

D- Allergic reactions:

 This is due to interaction between donor plasma proteins and recipient IgE antibody.

- CI/P:

- Chest, lumbar pain.
- Facial flushing
- Generalized urticaria.
- Laryngeal and facial oedema.
- Bronchospasm.
- Anaphylactic reaction in IgA deficient.

– Rx:

- Use I.V adrenaline.
- Prophylaxis in recurrent cases
- use washed RBCs.

E- Circulatory overload:

- Occur in cases of impaired myocardial reserve.
- Rx: stop transfusion
- IV frusemide.
- $-O_2$ inhalation.
- Rotating venesection.

F- Bacterial sepsis:

Due to transfusion of infected bl or platelets.

- CI/P:

- toxemia, fever, rigors and G.I.T upsets
- Pain along the vein, after transfusion of 50-70ml.

-Rx:

- Stop transfusion
- Bl c/s.
- Proper antibiotics.

G- Thrombophlebitis:

- Occurs when dextrose or saline is used in addition to blood.
- Common with cutdowns.
- In cases with prolonged transfusion.
- More with plastic canula than with metal needles.

H- Complications of massive transfusion:

- Bleeding complication: dilutional thrombocytopenia,
 consumption coagulopathy.
- Hypocalcemia: due to citrate in the bl.
- Hyperkalemia: esp. transfusion of old RBC.
- PH abnormalities: citrate metabolism →↑ lactic acid →↓ PH
- Hypothermia: cold bl.→ myocardial depressant effect → cardiac arrest esp. with ↓Ca, ↑K.
- ARDS: due to massive transfusion

Rx:

- Replace platelet and coagulation factors.
- Ca and K replacement.
- Correction of PH abnormalities.

2- Delayed transfusion reactions

- Delayed hemolytic transfusion reaction
 - It is due to alloantibody mediated RBC destruction which manifest one week after transfusions.
 - CI/P: triad: anemia, fever, jaundice after transfusion.
 - Rx: rarely needed.

Iron overload:

 Endocrine, cardiac and liver dysfunction occur in adults who receive 60-120U of bl.

- **Rx**:

- iron chelation therapy
- Use fresh units
- Extend transfusion interval.
- Decrease the frequency of transfusion.

Post transfusion purpura:

- Profound thrombocytopenia 5-9 days post transfusion, due to transfused antibodies against antigen on recipient platelet.
- Other causes of the thrombocytopenia should be excluded.
- Clinical awareness is required

- **RX**:

- Mild forms: no action is needed.
- Life threatening:
 - High dose steroids
 - Plasma pharesis
 - High dose IV immunoglobulins

Transfusion transmitted diseases

A) Viruses

- Plasma borne

- Hepatitis A (HAV)
- HepatitisB (HBV) and Delta agent.
- Hepatitis C (HCV)
- AIDS: HIV-1, HIV-2

- Cell-associated

- CMV.
- EBV.
- HTLV-! & ATLV.

B) Parasitic infection:

- Malaria: can be detected 7-50 days post transfusion.
- · Chagas dis: T.cruzi,
- Toxoplasmosis.

C) Bacteria

- Syphilis (Treponema).
- Brucellosis (Brucella)

Graft versus host dis.

· Immunosuppressive effect of bl.

transfusions.

Total Parenteral Nutrition (TPN)

A) Indications:

- TPN for nutritional repletion e.g.
 - GIT malignancy
 - Preoperative
 - Adjuvant to chemotherapy and radiotherapy.
- Bowel rest:
 - Crohn's disease.
 - Inflammatory colitis.
 - Short bowel syndrome.
 - Severe pancreatitis.

B) Initiation of TPN:

- Verify correct location of the catheter tip.
- Infuse no more than 1000ml of amino acid- dextrose in the first 24 hrs.

Monitor carefully for hyperglycemia

C) Example formulas:

- Glucose amino acid combination.
- Lipid emulsion: co-infused to increase non protein calories.
- Major minerals: provided in the range of daily requirement esp.K.
- Trace minerals: are added to one TPN bottle daily Zinc 0.8 4 mg, Copper 0 2 1 mg, Manganese (0.1 0.5 mg), Chromium (2 10 mg).
- Iron: 1ml iron dextran (50 mg elemental iron), IM or IV every month

– Vitamins:

- One vial (10ml) daily vitamine combination added to dextrose amino acid combination.
- Vit K 5mg /w IM.
- B₁₂ 200 -500 μgm/month, if not included in the multivitamin preparation.

Nutrients delivered in total parenteral nutrition for adults:

Nutrient	Daily parenteral supplement	Nutrient	Daily parenteral supplement
Water (ml/kg)	30 (1 ml/kcal)	Vitamins ^b	
Calories ^a	25-45 kcal/kg	A	3300 IU
Protein	0.6-1.5 gm/kg	D	200 IU
Linoleic acid	4% of calories	Е	10 IU
Major minerals		С	100 mg
Na	50-250 mEq	Thiamine (B ₁)	3 mg
K	30-200 mEq	Riboflavin (B ₂)	3.6 mg
Cl	50-250 mEq	Pantothenic acid (B ₃)	15 mg
Ca	10-20 mEq	Niacin (B ₅)	40 mg
Mg	10-30 mEq	Pyridoxine (B ₆)	4 mg
P	10-40 mmol	Biotin (B ₇)	60 µg
Other minerals		Folacin (B ₉)	400 μg
Zn	2.5-4 mg	Cobalamin (B ₁₂)	5 μg
Cu	0.5-1.5 mg	K	5 mg/week
Cr	10-15 μg		
Mn	0.15-0.8 mg		
Fe	50 mg/month		
I	50-75 μg		
Se	120µg		

D) Monitoring during stable TPN:

- Vital signs 4 times daily, weight daily, intake and output daily.
- Check urine and blood for glucose.
- Measure electrolytes, BUN.
- Monitor S. Ca, Mg and P. weekly.
- Liver enzymes and S. bilirubin weekly.
- Follow blood counts, serum albumin, prothrombin time.

Complications of TPN

1- Metabolic:

- Hyperglycemia and hyperosmolarity.
- Hypoglycemia.
- Electrolyte abnormalities. Vitamine deficiencies.
- Elevation of BUN.
- Hypercapnia.
- Reactions to lipid emulsion.
- Liver dysfunction.
- Metabolic bone disease.

2- Non metabolic complications:

- Complications related to catheter placement.
- Venous thrombosis.
- Catheter infection.

Thank you