

# Diagnosis of Pulmonary Embolism

#### By Abdul Razek Maaty,MD Professor of Medicine, Mansoura University



# **Diagnosis of Pulmonary Embolism**

Magnitude of problem

The clinical assessment alone is unreliable (nonspecific & inconsistent)
 The consequences of misdiagnosis are serious

**Over**  $\mathbf{D} \rightarrow \mathbf{risks}$  of anticoagulants

 $\blacksquare Under \blacksquare \rightarrow high mortality$ 



# **Diagnosis of Pulmonary Embolism**

Magnitude of problem

PE is present in only a third of patients in whom it is suspected
So, objective testing for PE is crucial
There are a plethora of tests
No single test is ideal (100% sensitive & specific, no risks, low cost)



# Nonimaging Diagnostic Methods

All are nonspecific



- **Biomarkers of cardiac:**
- Injury  $\rightarrow$  Troponins (I & T)
- Stretch → Natriuretic peptide (NTproBNP & BNP)
- Thrombophilia screen (VTE)
- Arterial blood gases
- **ECG**

# Plasma D-dimer ELISA

VTE represents the spectrum of one disease
Natural Break down of endogenous ineffective fibrinolysis
Measured by ELISA & Latex (bedside)
Highly sensitive test for acute VTE
It is nonspecific being elevated in many other conditions



# Plasma D-dimer ELISA

#### Causes of elevation

Postoperative state
Myocardial infarction
Pneumonia
Cancer, DIC
Sepsis, trauma, aging
Pregnancy
Other systemic illness
Some are mimics & all are risk factors of VTE



# Plasma D-dimer ELISA

**Clinical significance** 

Normal D-dimer (<500 µg/L), has a high NPV (no PE, no DVT)</li>
It provides a useful screening test
It is ideally suited for outpatients (ED)
It is not useful for inpatients (Surgery)



## **Troponins & Natriuretic peptides**

They are released from myocardium in acute PE due to RV microinfarctions (ischemia) & stretch Their elevation is an adverse prognostic sign in PE (massive): Increased mortality rate Requirement for inotropic support Requirement for mechanical ventilation



# It is suspected in: Patients <50 years with recurrent VTE</li> Patients with strong family history of VTE



# Causes of Thrombophilia

Hereditary = Primary Hypercoagulable States

| Common                                                                                                                                            | Uncommon                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Factor V Leiden mutation</li> <li>Prothrombin gene mutation</li> <li>Anticardiolipin antibodies</li> <li>Hyperhomocysteinemia</li> </ul> | <ul> <li>ATIII deficiency</li> <li>Protein C deficiency</li> <li>Protein S deficiency</li> <li>              factors VIII or XI      </li> </ul> |

# **Arterial Blood Gases**

Findings- all are nonspecific

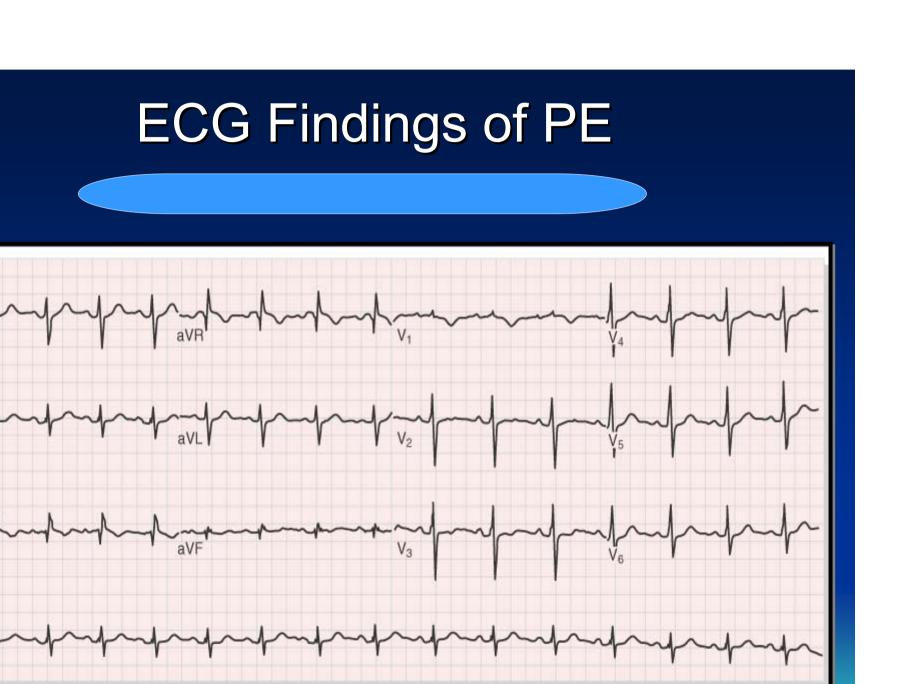
## TRIAD

- Hypoxemia (V/Q mismatch, shunting within lung or heart "PFO")
- Hypocapnea due to hyperventilation
- Widened Alveolar-arterial oxygen gradient (A-a) > 20 mm Hg



This triad is suggestive of acute PE
 Its absence does not exclude the D of acute PE

# So, it should not be used as a screening test for suspected PE


## Electrocardiogram

- Excludes other diagnoses as AMI or pericarditis
- Raises suspicion of PE
- Suggests the diagnosis of PE
- Nonspecific

# Electrocardiogram

Findings- all are nonspecific

It may be entirely normal Sinus tachycardia (most common) Minor ST & T wave abnormalities P pulmonale Right axis deviation Negative T waves in V1-V4 New incomplete or complete RBBB Arrythmias New S1Q3T3 (most specific but rare, 10%)



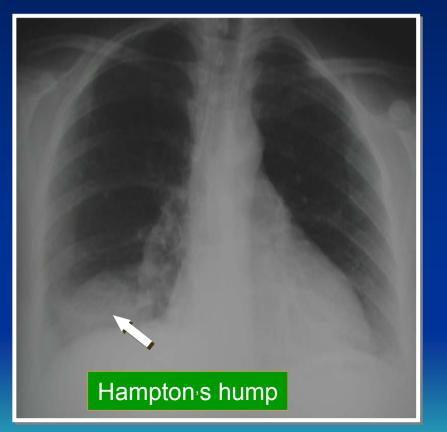
# maging Diagnostic Methods

X-ray chest

- Echocardiography
- CT scanning
- MRI
- Lung scanning (V/Q)
- Pulmonary angiography
- Imaging studies for deep vein thrombosis

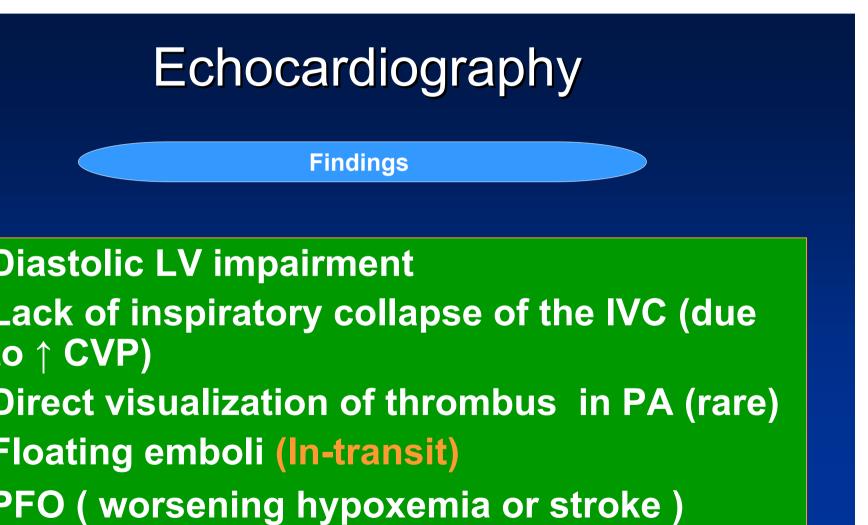
# **Chest Radiography**

Findings- all are nonspecific

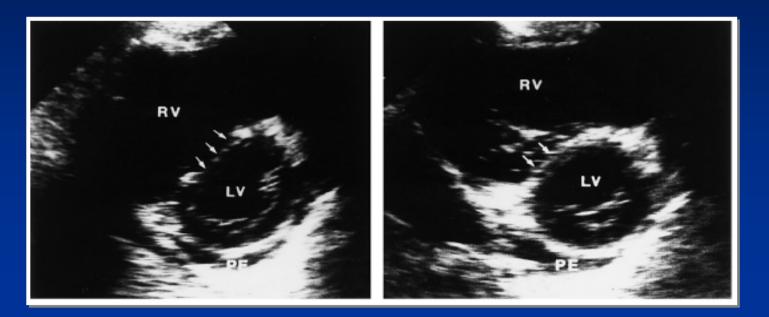

- Abnormal in ¼ of patients
- May show alternative D as pneumonia pneumothorax, rib fracture
- Small pleural effusion
- Atelectasis
- Pulmonary infiltrates
- Raised diaphragm

## Chest Radiography

Rare but occasionally pathognomonic


- Focal oligemia (Westermark's sign) = massive central embolic occlusion
- Peripheral wedge-shaped density above the diaphragm (Hampton's hump) = pulmonary infarction
- Enlarged right descending pulmonary artery = (Palla's sign)

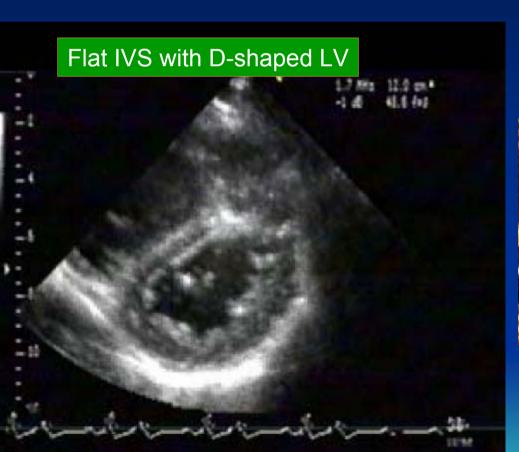
# Chest Radiography

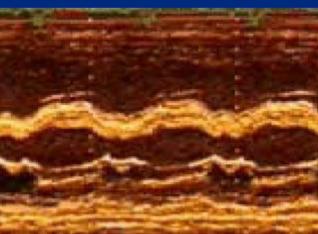



Findings

- **RV dilatation & hypertrophy**
- RV free wall hypokinesis ( sparing apex ) =
- Abnormal septal motion (flattening & baradoxical)
- **Fricuspid regurge & RA dilatation**
- PA hypertension & dilatation




**RV dilatation & abnormal septal motion** 




**Diastolic frame** 

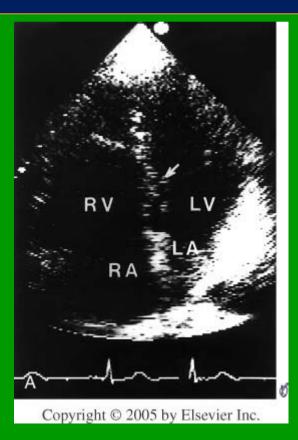
Systolic frame

**Abnormal septal motion** 

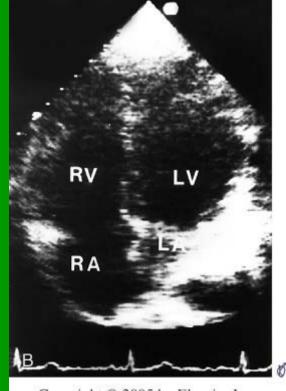




Paradoxical septal motion


**RV** hypertrophy & dilatation




**TEE-Emboli in transit-PFO** 



Follow-up of treatment



Refore treatment



Copyright © 2005 by Elsevier Inc.

3 hours after  $t_DA$ 

**Clinical significance** 

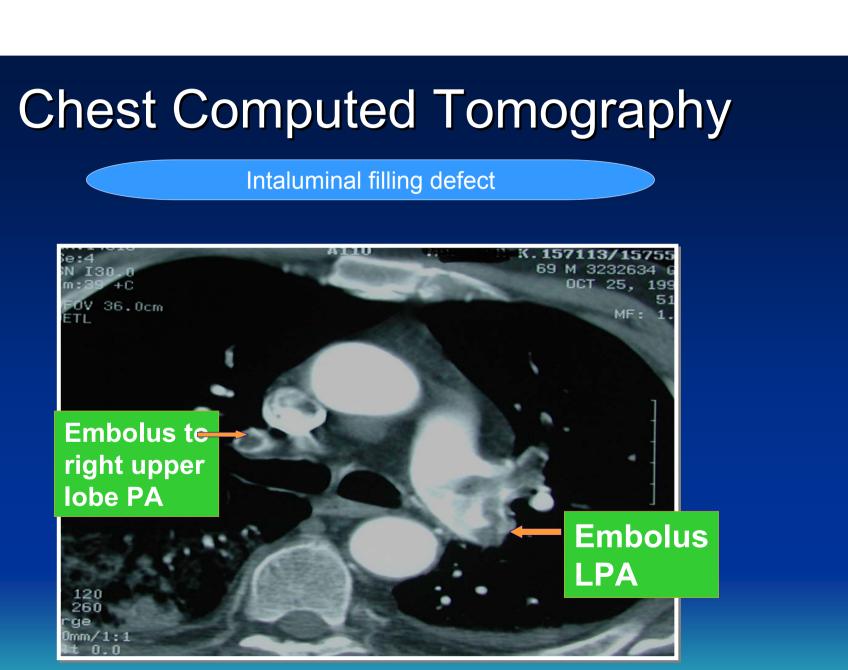
- Should be the initial test in hemodynamically unstable patient
- Should not be used routinely for D of PE being nonspecific & normal in about 50% in batients with PE
- Jsed for risk stratification, prognostication, reatment guidance & follow-up (before & after thrombolysis).

## Echocardiography Clinical significance

- Jseful when DD includes; pericardial amponade, RVI, aortic dissection & PE
- **TEE is useful in detecting unexplained SCD** & collapse due to acute PE
- TEE for visualization of centrally located clots
- VUS for large emboli

# Chest Computed Tomography (Helical=Spiral & Multidetector)

**Advantages** 


- Replacing V/Q scan as the initial imaging test in suspected PE (multidetector-row)
- Replacing pulmonary angiography as the gold standard diagnostic tool in PE (multidetector-row)
- More accessible, more specific, relatively safe (noninonic, low osmolar contrast media) & relatively rapid
- Diagnostic even in the presence of an abnormal chest radiograph

# Chest Computed Tomography **Advantages** Provides alternative diagnosis in 30% of cases as pneumonia, aortic dissection and malignancy Give information about the size and function of RV Advancing technology May be extended to look for concomitant DVT

# Chest Computed Tomography

#### Disadvantages

- Reader expertise required
- Expensive
- Not portable
- Poor visualization of certain regions as subsegmental (distal) emboli (first & secondgeneration machines)
- Requires a high dose of injected contrast



# Chest Computed Tomography



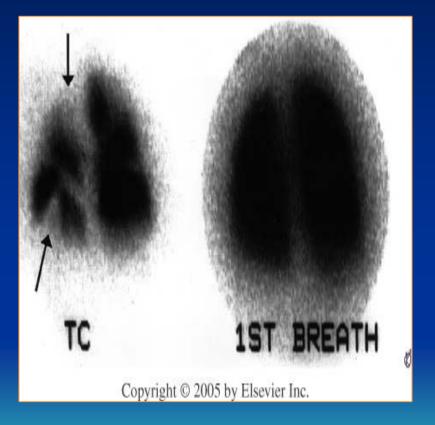
Saddle shaped embolus

# Chest Computed Tomography



# Ventilation-Perfusion (V/Q) Lung Scanning (almost outdated)

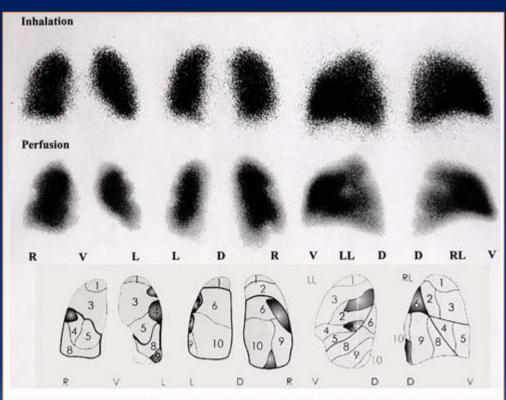
Technique


#### Perfusion scan

- Radioactive technetium 99m
- Injected IV
- **Jentilation scan**
- Radioactive xenon gas
- Inhaled
- 6-8 standard views are obtained with gamma camera

# /entilation-Perfusion Lung Scanning

Ventilation-perfusion (V/Q) mismatch


Normal ventilation + Abnormal perfusion defects = high probability for PE

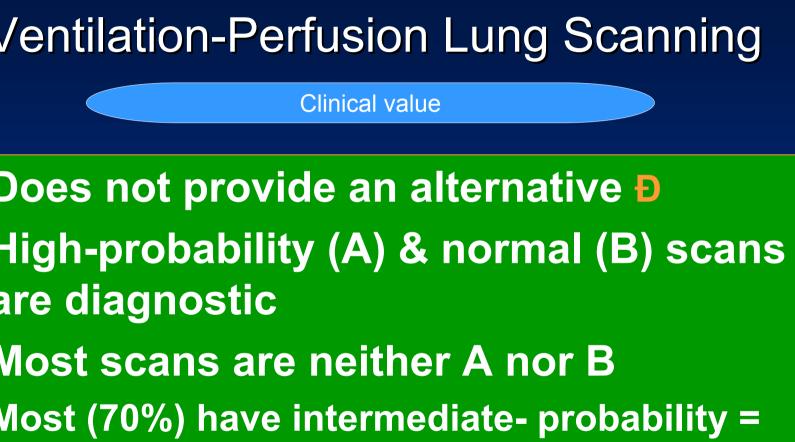


#### /entilation-Perfusion Lung Scanning Ventilation-perfusion mismatch gh-probability an for PE =rmal ventilation PERFUSION VENTILATION PERFUSION PERFUSION DORSAL VENTRAL DORSAL RL nultiple perfusion fects PERFUSION PERFUSION PERFUSION RDL LDL LL

# /entilation-Perfusion Lung Scanning

#### Ventilation-perfusion mismatch

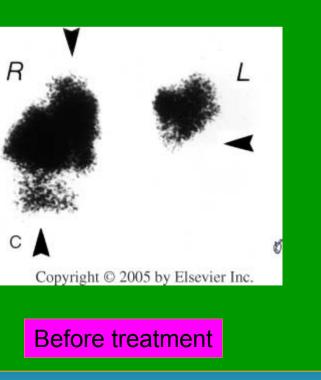


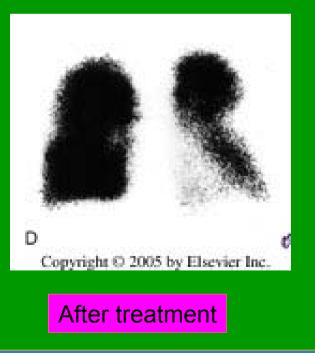

Several segmental and subsegmental perfusion defects are present in both lungs, particularly on the right side. The ventilation pattern of both lungs is normal.

## /entilation-Perfusion Lung Scanning

**Clinical value** 

## Rarely done nowadays


- Jsually reserved for patients with renal mpairment, contrast allergy or pregnancy
- Good in the presence of a normal chest adiograph
- Not helpful in abnormal CXR, cardiac & oulmonary diseases




equivocal (nondiagnostic)

# /entilation-Perfusion Lung Scanning

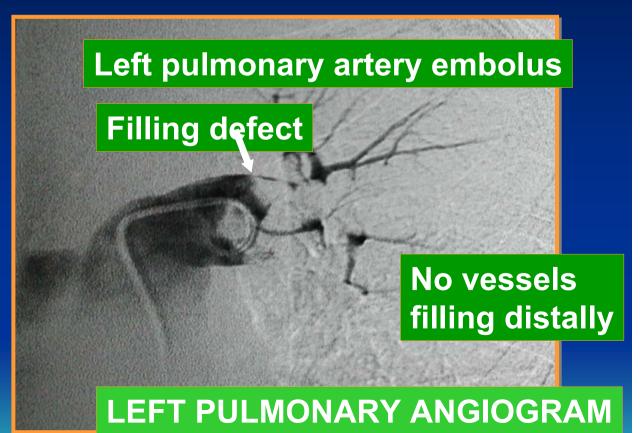
Follow-up of treatment

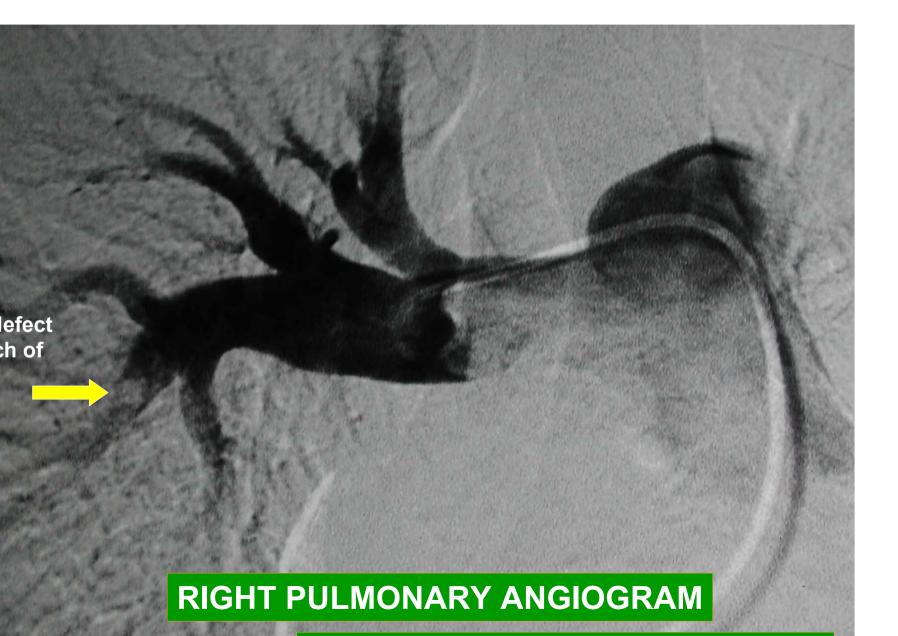




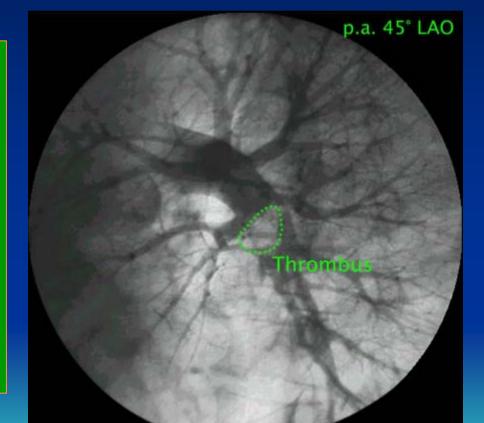
**Clinical value** 

- t is highly sensitive & specific for PE
- Vas the "gold standard", now replaced by the new nultidetector CT. It is rapidly becoming a lost art
- t is invasive, costly and uncomfortable
- t is less accurate for smaller (subsegmental emboli)
- Required when therapeutic interventions are planned as:-
- Suction catheter embolectomy
- Mechanical clot fragmentation
- Catheter directed thrombolysis

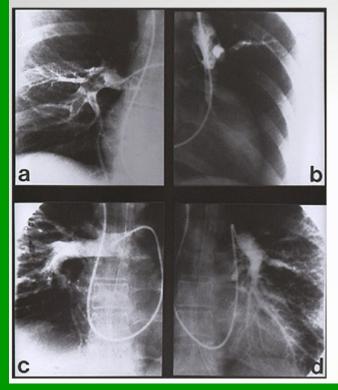

#### Technique


- A catheter is inserted into femoral vein, up he IVC through into right-sided cardiac chambers and into pulmonary arteries
- Optimal recording of right heart pressure racings
- Contrast injected directly into pulmonary arteries
- To avoid damaging the intima of PA, a soft, lexible catheters with side holes are used as pigtail)

Technique


- \_ow-osmolar, non-ionic contrast agents are used (to minimize transient)
- hypotension, heat and coughing)
- Contraindicated if thrombus is found in right heart
- Can be done with DSA to reduce contrast volume

ect sign of PE is onstant raluminal nvex filling fect or an abrupt ssel cut off en in more than e projection lirect signs are ional poperfusion, w flow & layed or ↓ nous flow






arge thrombus occluding the ower lobar oranch of left oulmonary artery



#### Follow-up of treatment



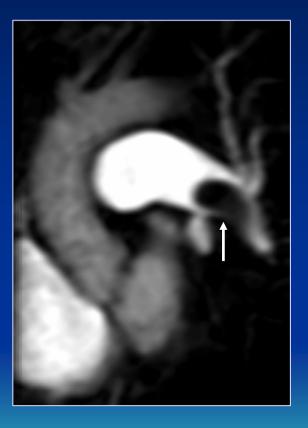
- a: Multiple large, partially occluding thrombi are seen within the right pulmonary artery as well as in its middle and lower lobar branch.
- b: There is almost complete thrombotic occlusion of the upper and lower lobar branch of the left pulmonary artery.
- c: Follow-up pulmonary angiography 7 days after the start of heparin shows absence of thrombotic material in the right pulmonary artery.
- d: On follow-up examination the left pulmonary artery is also free of thrombus.

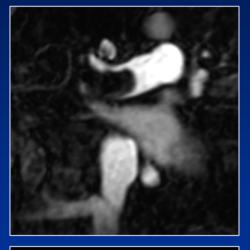
Q.

# adolinium-Enhanced Magnetic Resonance Angiography

It is a promising imaging test for suspected PE

- Sensitive and specific for segmental or larger PE
- Safe in patients with renal impairment (no contrast media nor ionizing radiation)
- Excellent sensitivity & specificity for the D of DVT especially for pelvic thrombosis
- Assessment of LV & RV size and function (important for risk stratification)


# Gadolinium-Enhanced MRA





**Coronal MIP** 

# Gadolinium-Enhanced MRA

#### Acute PE







Imaging Studies For Deep Vein Thrombosis

- **Compression ultrasound**
- Contrast venography
- mpedance plethymography (outdated)
- CT venography
- MR venography

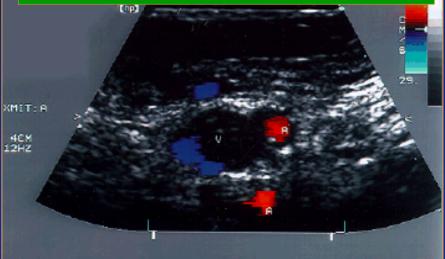
## Colored Duplex Venous Ultrasonography

**Compression Ultrasound** 

The most commonly used method for symptomatic & proximal DVT (surrogate for PE)

Noninvasive, portable, accurate & cheap

Detection of other pathologies as nematomas, lymphadenopathy, abscesses


## Colored Duplex Venous Ultrasonography

Limitations

- nsensitive for asymptomatic & distal (calf) DTV
- **Operator dependence**
- nability to distinguish acute from chronic
- OVT may have embolized completely, resulting, in normal scan
- Difficult for pelvic DVT & acute upon a chronic one

## Colored Duplex Venous Ultrasonography

Noncompressibility of the vein



Duplex-Doppler ultrasound image of an acute superficial femoral vein thrombosis (labelled "V"). Blue color indicates venous blood flow and red

Y). Blue color indicates venous blood flow and red indicates arterial blood flow (labelled "A"). Echogenic white speckles are seen in the vein which was noncompressible with the ultrassurd probe.

# Contrast Venography (almost outdated)

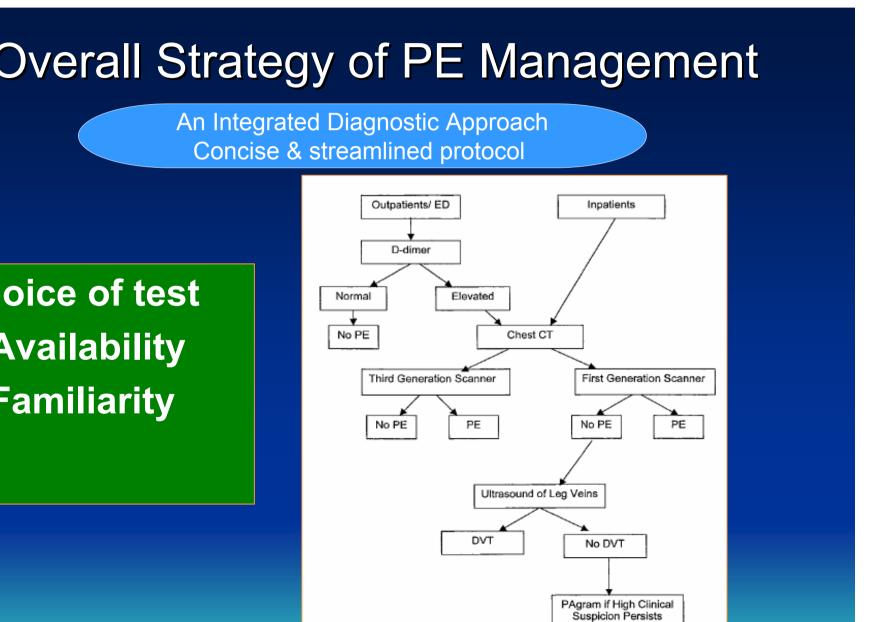
Advantages & Disadvantages

sed to be gold tandard

xcellent for calf

eins

ecessary for atheter-based


nterventions

It causes chemical phlebitis or allergy
 Invasive, and costly
 Fail to diagnose massive DVT

# Overall Strategy of PE Diagnosis

Components

- Pretest clinical probability
- Patient setting (inpatient or outpatient)
- D-dimer testing
- CT scan
- /enous US
- Pulmonary angiography



# Summary of Diagnostic Tests

### kcluded by

- ormal pulmonary ngiogram
- ormal multislice CT ormal D-dimer by LISA

#### Confirmed by

Filling defect on pulmonary angiogram Filling defect on spiral CT Evidence of acute DVT + non-diagnostic spiral CT



# sk Stratification of Pulmonary Embolism

# Importance of Risk Stratification

- PE presents with a wide spectrum of Ilness (mild-to-severe) with varying
- prognoses & treatment modalities
- From asymptomatic emboli to massive PE
- Freatment strategy:
  - •Low-risk patients  $\rightarrow$  anticoagulation (outpatient)
  - ◆High-risk patients → anticoagulants + thrombolysis or embolectomy + intensive support

# Methods of Risk Stratification

- Clinical evaluation as Geneva Prognostic Index
- Cardiac biomarkers as troponins & natriuretic eptides
- Echocardiography (most important)
- Others as ECG, CTPA, MRI

# Geneva Point Score

| Variable      | Point score |
|---------------|-------------|
| Cancer        | +2          |
| Heart failure | +1          |
| Prior DVT     | +1          |
| Hypotension   | +2          |
| Hypoxia       | +1          |
| DVT on US     | +1          |

# Geneva Adverse Outcome Score

| Number of<br>points | Number<br>of<br>patients | % of patients with adverse outcome (n) |
|---------------------|--------------------------|----------------------------------------|
| 0                   | 52                       | 0 (0)                                  |
| 1                   | 79                       | 2.2 (2)                                |
| 2                   | 49                       | 4.1 (2)                                |
| 3                   | 56                       | 17.8 (10)                              |
| 4                   | 22                       | 27.3 (6)                               |
| 5                   | 7                        | 57.1 (40)                              |
| 6                   | 3                        | 100 (3)                                |

# Markers of Poor Prognosis

### Geneva point score $\geq 5$ Severe dyspnea, cyanosis & syncope Aypoxia despite Oxygen **Clinical evidence of PH or RV strain** ♦ ↑ pulmonic S2 ♦ Left parasternal heave, TR Distended neck veins Elevated cardiac biomarkers ECG evidence of RV strain Echo/Doppler evidence of: RV dysfunction PH (>5 weeks)